Extensions 1→N→G→Q→1 with N=C32 and Q=C2xDic6

Direct product G=NxQ with N=C32 and Q=C2xDic6
dρLabelID
C3xC6xDic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C32 and Q=C2xDic6
extensionφ:Q→Aut NdρLabelID
C32:1(C2xDic6) = C3:S3:Dic6φ: C2xDic6/C4D6 ⊆ Aut C327212-C3^2:1(C2xDic6)432,294
C32:2(C2xDic6) = C2xHe3:2Q8φ: C2xDic6/C22D6 ⊆ Aut C32144C3^2:2(C2xDic6)432,316
C32:3(C2xDic6) = C2xC33:Q8φ: C2xDic6/C6Q8 ⊆ Aut C32488C3^2:3(C2xDic6)432,758
C32:4(C2xDic6) = C2xHe3:3Q8φ: C2xDic6/C2xC4S3 ⊆ Aut C32144C3^2:4(C2xDic6)432,348
C32:5(C2xDic6) = C2xHe3:4Q8φ: C2xDic6/C2xC4S3 ⊆ Aut C32144C3^2:5(C2xDic6)432,384
C32:6(C2xDic6) = S3xC32:2Q8φ: C2xDic6/Dic3C22 ⊆ Aut C32488-C3^2:6(C2xDic6)432,603
C32:7(C2xDic6) = C33:5(C2xQ8)φ: C2xDic6/Dic3C22 ⊆ Aut C32488-C3^2:7(C2xDic6)432,604
C32:8(C2xDic6) = S3xC32:4Q8φ: C2xDic6/C12C22 ⊆ Aut C32144C3^2:8(C2xDic6)432,660
C32:9(C2xDic6) = C3:S3:4Dic6φ: C2xDic6/C12C22 ⊆ Aut C32484C3^2:9(C2xDic6)432,687
C32:10(C2xDic6) = C2xC33:4Q8φ: C2xDic6/C2xC6C22 ⊆ Aut C32144C3^2:10(C2xDic6)432,683
C32:11(C2xDic6) = C2xC33:5Q8φ: C2xDic6/C2xC6C22 ⊆ Aut C3248C3^2:11(C2xDic6)432,695
C32:12(C2xDic6) = C3xS3xDic6φ: C2xDic6/Dic6C2 ⊆ Aut C32484C3^2:12(C2xDic6)432,642
C32:13(C2xDic6) = C3:S3xDic6φ: C2xDic6/Dic6C2 ⊆ Aut C32144C3^2:13(C2xDic6)432,663
C32:14(C2xDic6) = C6xC32:2Q8φ: C2xDic6/C2xDic3C2 ⊆ Aut C3248C3^2:14(C2xDic6)432,657
C32:15(C2xDic6) = C6xC32:4Q8φ: C2xDic6/C2xC12C2 ⊆ Aut C32144C3^2:15(C2xDic6)432,710
C32:16(C2xDic6) = C2xC33:8Q8φ: C2xDic6/C2xC12C2 ⊆ Aut C32432C3^2:16(C2xDic6)432,720

Non-split extensions G=N.Q with N=C32 and Q=C2xDic6
extensionφ:Q→Aut NdρLabelID
C32.(C2xDic6) = C2xC36.C6φ: C2xDic6/C2xC4S3 ⊆ Aut C32144C3^2.(C2xDic6)432,352
C32.2(C2xDic6) = S3xDic18φ: C2xDic6/C12C22 ⊆ Aut C321444-C3^2.2(C2xDic6)432,284
C32.3(C2xDic6) = C2xC9:Dic6φ: C2xDic6/C2xC6C22 ⊆ Aut C32144C3^2.3(C2xDic6)432,303
C32.4(C2xDic6) = C6xDic18φ: C2xDic6/C2xC12C2 ⊆ Aut C32144C3^2.4(C2xDic6)432,340
C32.5(C2xDic6) = C2xC12.D9φ: C2xDic6/C2xC12C2 ⊆ Aut C32432C3^2.5(C2xDic6)432,380

׿
x
:
Z
F
o
wr
Q
<