Extensions 1→N→G→Q→1 with N=C32 and Q=C2×Dic6

Direct product G=N×Q with N=C32 and Q=C2×Dic6
dρLabelID
C3×C6×Dic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C32 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C321(C2×Dic6) = C3⋊S3⋊Dic6φ: C2×Dic6/C4D6 ⊆ Aut C327212-C3^2:1(C2xDic6)432,294
C322(C2×Dic6) = C2×He32Q8φ: C2×Dic6/C22D6 ⊆ Aut C32144C3^2:2(C2xDic6)432,316
C323(C2×Dic6) = C2×C33⋊Q8φ: C2×Dic6/C6Q8 ⊆ Aut C32488C3^2:3(C2xDic6)432,758
C324(C2×Dic6) = C2×He33Q8φ: C2×Dic6/C2×C4S3 ⊆ Aut C32144C3^2:4(C2xDic6)432,348
C325(C2×Dic6) = C2×He34Q8φ: C2×Dic6/C2×C4S3 ⊆ Aut C32144C3^2:5(C2xDic6)432,384
C326(C2×Dic6) = S3×C322Q8φ: C2×Dic6/Dic3C22 ⊆ Aut C32488-C3^2:6(C2xDic6)432,603
C327(C2×Dic6) = C335(C2×Q8)φ: C2×Dic6/Dic3C22 ⊆ Aut C32488-C3^2:7(C2xDic6)432,604
C328(C2×Dic6) = S3×C324Q8φ: C2×Dic6/C12C22 ⊆ Aut C32144C3^2:8(C2xDic6)432,660
C329(C2×Dic6) = C3⋊S34Dic6φ: C2×Dic6/C12C22 ⊆ Aut C32484C3^2:9(C2xDic6)432,687
C3210(C2×Dic6) = C2×C334Q8φ: C2×Dic6/C2×C6C22 ⊆ Aut C32144C3^2:10(C2xDic6)432,683
C3211(C2×Dic6) = C2×C335Q8φ: C2×Dic6/C2×C6C22 ⊆ Aut C3248C3^2:11(C2xDic6)432,695
C3212(C2×Dic6) = C3×S3×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C32484C3^2:12(C2xDic6)432,642
C3213(C2×Dic6) = C3⋊S3×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C32144C3^2:13(C2xDic6)432,663
C3214(C2×Dic6) = C6×C322Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C3248C3^2:14(C2xDic6)432,657
C3215(C2×Dic6) = C6×C324Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C32144C3^2:15(C2xDic6)432,710
C3216(C2×Dic6) = C2×C338Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C32432C3^2:16(C2xDic6)432,720

Non-split extensions G=N.Q with N=C32 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C32.(C2×Dic6) = C2×C36.C6φ: C2×Dic6/C2×C4S3 ⊆ Aut C32144C3^2.(C2xDic6)432,352
C32.2(C2×Dic6) = S3×Dic18φ: C2×Dic6/C12C22 ⊆ Aut C321444-C3^2.2(C2xDic6)432,284
C32.3(C2×Dic6) = C2×C9⋊Dic6φ: C2×Dic6/C2×C6C22 ⊆ Aut C32144C3^2.3(C2xDic6)432,303
C32.4(C2×Dic6) = C6×Dic18φ: C2×Dic6/C2×C12C2 ⊆ Aut C32144C3^2.4(C2xDic6)432,340
C32.5(C2×Dic6) = C2×C12.D9φ: C2×Dic6/C2×C12C2 ⊆ Aut C32432C3^2.5(C2xDic6)432,380

׿
×
𝔽