extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:1(C2xDic6) = C3:S3:Dic6 | φ: C2xDic6/C4 → D6 ⊆ Aut C32 | 72 | 12- | C3^2:1(C2xDic6) | 432,294 |
C32:2(C2xDic6) = C2xHe3:2Q8 | φ: C2xDic6/C22 → D6 ⊆ Aut C32 | 144 | | C3^2:2(C2xDic6) | 432,316 |
C32:3(C2xDic6) = C2xC33:Q8 | φ: C2xDic6/C6 → Q8 ⊆ Aut C32 | 48 | 8 | C3^2:3(C2xDic6) | 432,758 |
C32:4(C2xDic6) = C2xHe3:3Q8 | φ: C2xDic6/C2xC4 → S3 ⊆ Aut C32 | 144 | | C3^2:4(C2xDic6) | 432,348 |
C32:5(C2xDic6) = C2xHe3:4Q8 | φ: C2xDic6/C2xC4 → S3 ⊆ Aut C32 | 144 | | C3^2:5(C2xDic6) | 432,384 |
C32:6(C2xDic6) = S3xC32:2Q8 | φ: C2xDic6/Dic3 → C22 ⊆ Aut C32 | 48 | 8- | C3^2:6(C2xDic6) | 432,603 |
C32:7(C2xDic6) = C33:5(C2xQ8) | φ: C2xDic6/Dic3 → C22 ⊆ Aut C32 | 48 | 8- | C3^2:7(C2xDic6) | 432,604 |
C32:8(C2xDic6) = S3xC32:4Q8 | φ: C2xDic6/C12 → C22 ⊆ Aut C32 | 144 | | C3^2:8(C2xDic6) | 432,660 |
C32:9(C2xDic6) = C3:S3:4Dic6 | φ: C2xDic6/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:9(C2xDic6) | 432,687 |
C32:10(C2xDic6) = C2xC33:4Q8 | φ: C2xDic6/C2xC6 → C22 ⊆ Aut C32 | 144 | | C3^2:10(C2xDic6) | 432,683 |
C32:11(C2xDic6) = C2xC33:5Q8 | φ: C2xDic6/C2xC6 → C22 ⊆ Aut C32 | 48 | | C3^2:11(C2xDic6) | 432,695 |
C32:12(C2xDic6) = C3xS3xDic6 | φ: C2xDic6/Dic6 → C2 ⊆ Aut C32 | 48 | 4 | C3^2:12(C2xDic6) | 432,642 |
C32:13(C2xDic6) = C3:S3xDic6 | φ: C2xDic6/Dic6 → C2 ⊆ Aut C32 | 144 | | C3^2:13(C2xDic6) | 432,663 |
C32:14(C2xDic6) = C6xC32:2Q8 | φ: C2xDic6/C2xDic3 → C2 ⊆ Aut C32 | 48 | | C3^2:14(C2xDic6) | 432,657 |
C32:15(C2xDic6) = C6xC32:4Q8 | φ: C2xDic6/C2xC12 → C2 ⊆ Aut C32 | 144 | | C3^2:15(C2xDic6) | 432,710 |
C32:16(C2xDic6) = C2xC33:8Q8 | φ: C2xDic6/C2xC12 → C2 ⊆ Aut C32 | 432 | | C3^2:16(C2xDic6) | 432,720 |